Big Data Analytics over Encrypted Datasets with Seabed
نویسندگان
چکیده
Today, enterprises collect large amounts of data and leverage the cloud to perform analytics over this data. Since the data is often sensitive, enterprises would prefer to keep it confidential and to hide it even from the cloud operator. Systems such as CryptDB and Monomi can accomplish this by operating mostly on encrypted data; however, these systems rely on expensive cryptographic techniques that limit performance in true “big data” scenarios that involve terabytes of data or more. This paper presents Seabed, a system that enables efficient analytics over large encrypted datasets. In contrast to previous systems, which rely on asymmetric encryption schemes, Seabed uses a novel, additively symmetric homomorphic encryption scheme (ASHE) to perform large-scale aggregations efficiently. Additionally, Seabed introduces a novel randomized encryption scheme called Splayed ASHE, or SPLASHE, that can, in certain cases, prevent frequency attacks based on auxiliary data.
منابع مشابه
Big Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملComparative Analysis of Diverse Collection of Big Data Analytics Tools
Over the past era, there have been a lot of efforts and studies are carried out in growing proficient tools for performing various tasks in big data. Recently big data have gotten a lot of publicity for their good reasons. Due to the large and complex collection of datasets it is difficult to process on traditional data processing applications. This concern turns to be further mandatory for pro...
متن کاملA Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملApplication of Big Data Analytics in Power Distribution Network
Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...
متن کاملwww.simularity.com The Simularity High Performance Correlation Engine
Why similarity analytics? Similarity analytics are the best analysis tool for discovery of insights from big data. The value is in getting the data to tell you things you didn't know. This is a challenge best solved by looking for connections in the data. You just can't do this discovery with the standard analytics that come with a data warehouse. And doing this type of discovery over large dat...
متن کامل